首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   13篇
  国内免费   27篇
安全科学   172篇
废物处理   27篇
环保管理   40篇
综合类   169篇
基础理论   24篇
污染及防治   26篇
评价与监测   19篇
社会与环境   8篇
灾害及防治   56篇
  2023年   17篇
  2022年   12篇
  2021年   33篇
  2020年   31篇
  2019年   15篇
  2018年   8篇
  2017年   4篇
  2016年   14篇
  2015年   25篇
  2014年   23篇
  2013年   27篇
  2012年   28篇
  2011年   24篇
  2010年   15篇
  2009年   20篇
  2008年   17篇
  2007年   30篇
  2006年   24篇
  2005年   15篇
  2004年   12篇
  2003年   17篇
  2002年   17篇
  2001年   18篇
  2000年   12篇
  1999年   15篇
  1998年   14篇
  1997年   11篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
1.
Thermal runaway was studied in a continuous tubular pilot reactor under steady-state regime. Different accident scenarii were conducted by making some errors on reactant concentrations and/or temperature feed. To prevent thermal runaway, control by direct contact by solvent injection was used at different reactor locations. This injection allowed controlling the maximum reaction temperature. A simplified analytical method to estimate the maximum reaction temperature along the reactor was used.Benefit of this control method was the diminution of computational time. Furthermore, by injecting solvent to control maximum reaction temperature, there is no need to shut down the unit. The control method was validated experimentally.  相似文献   
2.
利用热重分析仪在空气气氛、不同的升温速率下对带壳稻谷粉和玉米粒粉进行了热重测试,依据热重实验数据,采用多种热解动力学分析方法计算了水稻和玉米的活化能数值并进行比较,结果表明水稻和玉米的热氧化反应活化能随着转化率出现先增加后降低的趋势,并在转化率为70%左右达到了极大值。  相似文献   
3.
汪俊岭  王鑫  宋磊  胡源 《火灾科学》2019,28(4):211-221
棉花是纺织业的重要原料,是人民群众生活不可或缺的必需品,同时也是我国进出口重要的商品。研究如何安全有效地进行棉花的储备具有十分重要的现实意义。棉纤维本身含有脂肪、蜡质和果胶等适合微生物生长繁殖的营养物质。在棉花储备中,高的回潮率会加速微生物的繁殖,进而产生热量。热量的累积会引起温度升高以及棉花霉变,不利于棉花的安全有效储存。因此,通过静电吸附法将安全无毒的有机锌络合物附着在棉纤维表面,研究表明,相同条件下,处理棉的霉变状况明显得到抑制。加速发霉条件下,未处理棉的相对于白纸的平均色差值为28.10,而双乙酸锌以及苯甲酸锌防霉处理棉的色差值分别为5.16和5.86,下降了81.6%和79.1%。自然发霉条件下,双乙酸锌以及苯甲酸锌防霉处理棉的色差值分别下降了53.8%和50.7%。同时研究了纯棉以及处理棉氮气下的热分解动力学,相比于未处理棉,双乙酸锌防霉处理后活化能下降了15.8%,而苯甲酸锌防霉处理后活化能下降了10.9%。此外,利用实时红外和热重红外联用技术得到了样品在热解过程中固相以及气相的裂解产物的红外谱图,发现防霉处理能一定程度上抑制棉花热解。  相似文献   
4.
Lithium-ion batteries with relatively narrow operating temperature range have provoked concerns regarding the safety of LIBs. In this work, a series of experiments were conducted to explore the thermal runaway (TR) behaviors of charging batteries in a high/low temperature test chamber. The effects of charging rates (0.5 C, 1 C, 2 C, and 3 C), and ambient temperature (2 °C, 32 °C and 56 °C) are comprehensively investigated.The results indicate that the cell exhibited greater thermal hazard at the high charging rate and ambient temperature conditions. As the charging rate increased from 0.5 C to 3 C, more lithium intercalated in the anode prompt the TR triggered in advance, the TR onset temperature decreased from 297.5 °C to 264.7 °C. In addition, the charging time decreased with the elevated ambient temperature, resulting in a relatively higher TR onset temperature and lower maximum temperature, and the average TR critical time declined by 115–143 s. Finally, the TR required less heat accumulation with increasing of charging rate and ambient temperature, and the heat generation of side reaction played a substantial role that accounted for approximately 54%∼63%. These results provide an insight into the charging cell thermal runaway behaviors in complex operation environments and deliver valuable guidance for improving the safety of cell operation.  相似文献   
5.
Ammonium peroxydisulfate (APS), one of the most widely used inorganic peroxides in the process industries, is a thermally unstable peroxide and potent oxidizer due to the presence of peroxy bond in the molecule and is incompatible with most substances. To investigate the effect of typical additives on the thermal decomposition of APS, in this paper, diamine phosphate (DAP), monoamine phosphate (MAP), and aluminum hydroxide (AH) were selected as additives; pure APS and samples with 10 wt% and 20 wt% of additives were first tested by differential scanning calorimetry (DSC). The experiments and analysis showed that the samples with 10 wt% of additive had better thermal stability than those with 20 wt% of additive. After screening, the three groups of 10 wt% AH, 10 wt% MAP, and 20 wt% MAP additive conditions could be considered to have a better thermal stability effect on the thermal decomposition of APS. Four groups of samples were, in turn, tested by Phi-Tec II. The adiabatic results showed two discontinuous exothermic processes; 10 wt% AH promoted the weak exothermic effect in the first stage. In contrast, the three groups of additives in the main exothermic stage showed different degrees of inhibition, and the inhibiting effect was ranked as 10 wt% AH, 10 wt% MAP, and 20 wt% MAP in order. Finally, the self-accelerated decomposition temperature (SADT) was calculated under the 25 kg standard package. The adiabatic results, including SADT, were combined to render feasible recommendations for the use of additives, which provides references for the packaging and transportation of additives and their applications.  相似文献   
6.
The majority of the research activities in the area of warm forming are concentrated on demonstrating or simulating the improved formability associated with forming lightweight materials such as aluminum alloys at elevated temperatures. However, the ability to design the proper thermal management system within the forming tool is a critical aspect to delivering this technology as a viable, stable production alternative to traditional stamping. This work begins to address the thermal stability issues of this process by examining the impact of process cycle time on the parting surface temperature response. Cycle times of 10, 15, 30, and 300 s were evaluated using a reciprocating surface and a self-heated experimental block of 1020 steel fitted with resistance cartridge heaters. The presented results indicate that cycle time does not significantly impact the steady-state temperature response at the parting surface for a well-insulated die that has proper thermal management. Parting surface experimental results were compared to values obtained numerically and through the use of the novel thermal finite element analysis software PASSAGE/Forming®.  相似文献   
7.
A study has examined the effect of urea on the thermal stability and detonation characteristics of ammonium nitrate (AN). The thermal decomposition temperature and surface morphology of samples were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). For further research on the thermal sensitivity and shock sensitivity of the samples, the Koenen test and UN gap test were conducted. The results indicate that urea can substantially increase the thermal stability of AN (the greatest exothermic peak is increased by more than 100 °C) and reduce the thermal sensitivity of AN. However, AN-50wt. % urea mixtures can still produce a steady detonation in the UN gap test. Urea cannot reduce the ability to propagate a detonation. Possible explanations for these results are discussed.  相似文献   
8.
In this study, the mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor were investigated through thermal decomposition methods. The results show that the mercury adsorption performance of the HBr-modified fly ash was enhanced significantly. The mercury species adsorbed by unmodified fly ash were HgCl2, HgS and HgO. The mercury adsorbed by HBr-modified fly ash, in the entrained-flow reactor, existed in two forms, HgBr2 and HgO, and the HBr was the dominant factor promoting oxidation of elemental mercury in the entrained-flow reactor. In the current study, the concentration of HgBr2 and HgO in ash from the fine ash vessel was 4.6 times greater than for ash from the coarse ash vessel. The fine ash had better mercury adsorption performance than coarse ash, which is most likely due to the higher specific surface area and longer residence time.  相似文献   
9.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   
10.
Lysine is widely used in the fields of food, medicine and feed, which generally appears in the form of lysine sulfate or lysine hydrochloride dust because of the high instability of the free L-lysine. The L-lysine Sulfate is in high risk of decomposition, spontaneous ignition and even the dust explosion, because the control temperature in its production process is high up to 90 °C. Thus, the thermal behaviors and its thermal stability of 65% lysine sulfate are experimentally explored in Air and Nitrogen using the simultaneous TG-DSC measurements. Results show: (1) the decomposition of 65% lysine sulfate can be divided into three stages both in the atmospheres of air and nitrogen, and most of the weight loss occurred in the first two stages, which are related with the decarboxylation and deamination process. (2) The effects of atmosphere on the decomposition of 65% lysine sulfate mainly occur at the third stage. In this stage, the weight loss in nitrogen is only 14.2%, which is much lower than that in air (34.3%), which is related to the oxidative degradation at high temperature. Besides, the active energy is slightly increased in nitrogen compared to that in air. (3) The initial temperatures of the decomposition of the 65% lysine sulfate are 145 °C and 155 °C, for the air and nitrogen atmosphere, respectively, which are much lower than that (260 °C) of the pure lysine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号